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A truncation procedure (Ladell, Parrish & Taylor, 1959) has been proposed to circumvent certain 
practical and theoretical difficulties in the calculation of the moments of diffraction line profiles. 
The theory of the analysis of line profiles by the method of moments is reviewed. A rigorous formula- 
tion of the truncation procedure is given and the truncation error is estimated. An analytic represen- 
tation of the spectral profile of Ka doublets is derived so that the spectral characteristics needed for 
the analysis of line profiles can be obtained. 

Introduction 

The line profiles in powder diffractometry are convolu- 
tions of the incident X-ray spectral distribution, the 
various instrumental aberrations and the intrinsic 
diffraction pattern of the polycrystalline sample. 
These factors combine in a complex manner to broaden 
and shift the position of an observed line profile from 
that  which would be observed if the diffractometer 
were free of aberrations and the specimen were a 
perfect crystalline powder. The instrumental and 
geometrical aberrations, which are generally smaller 
than those that  occur in film measurements, can 
usually be neglected in routine applications. However, 
they must be taken into account in precision measure- 
ments and in special applications that  depend upon 
an accurate analysis of line profiles. A method based 
upon measuring the first moment or centroid of a line 
has been developed which makes it possible to correct 
the data for the aberrations. I t  was formerly called 
the center-of-gravity method (Ladell, Parrish & 
Taylor, 1957, 1959, which are referred to as I in this 
paper). 

Spencer (1931) appears to have been the first to 
use the concept of moments in X-ray analysis. He 
used a graphical method to correct the first moment of 
observed X-ray emission lines to account for the effect 
of 'vertical' divergence in two-crystal spectrometry. 
His approach does not appear to have been used 
subsequently by other spectroscopists or diffraction- 
ists, probably because of mathematical difficulties. 

Wilson (1950, 1954; Parrish & Wilson, 1954) greatly 
extended and generalized the application of the method 
of moments to X-ray powder diffractometry. Wilson 
showed that  it was possible to account for the several 
instrumental aberrations of the observed line profile 
in terms of the first and second moments of the 
aberrational functions. He used the first moment to 
determine the shift of the line from its correct position, 
and the variance (involving the second moment) to 
analyze the broadening. The elegance of this method 
arises from the fact that  the first moment of the 

observed distribution is the sum of the first moments 
of the individual instrumental aberrations and the first 
moment of the dispersed X-ray spectral distribution. 
The variance similarly has this additive property. 

An analysis of all the various instrumental aberra- 
tions in terms of the complete aberrational line profiles 
remains mathematically formidable, but the first and 
second moments of the aberrational distributions have 
been derived and most of them have been experimen- 
tally confirmed (Wilson, 1950, 1954; Parrish & Wilson, 
1954, 1959; Pike, 1957). Although it is convenient 
and practical to apply the concept of moments to 
observed line profiles, extensive use of this method is 
not widespread. Instead, it has been common practice 
to use other methods to define line positions, which 
unfortunately lead to measures of central tendency 
not easily amenable to corrections for instrumental 
aberrations. In these cases, satisfactory accounts of 
the effects of the aberrations are either lacking or 
recourse to questionable extrapolation arguments has 
been necessary (Ladell, Parrish & Taylor, 1959). 

If the full line profiles of the aberrational functions 
were known, it would be theoretically possible to use 
them to determine corrections for any measure of 
central tendency. Tedious and complicated mathe- 
matical procedures would be required, because it 
would be necessary to unfold (Stokes, 1948) all the 
aberrational functions from the observed line profile. 
The use of centroids as a measure of central tendency 
is consequently particularly advantageous, since re- 
course to unfolding and characterizing complete aber- 
rational distributions is obviated. 

Certain theoretical and practical difficulties are, 
however, encountered in the use of the method of 
moments. X-ray spectroscopists (Hoyt, 1932; Parratt,  
1936; Shacklett & DuMond, 1957) state that  the 
X-ray spectral lines are Cauchy-like in the sense that  
the decay of the spectral distribution, I(X-A0), is of 
the order of I/(~-,~o) 2. The first moments of such 
distributions are indeterminate when the distributions 
are infinite in extension. 

Although observed diffractometer line profiles are 
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not Cauchy-like in the central region around the peak 
and in most cases out to several half-widths on either 
side of the central region, the tails decay very slowly 
and present the practical difficulty of accurately 
determining a background level (to define the distri- 
bution) in a region where the signal-to-background 
ratio is approaching zero. Small errors in this region 
may contribute large uncertain moments in the 
calculation of the centrold of what is essentially the 
line profile; moreover, the subjective decision of where 
the profile begins and ends significantly affects the 
calculation. 

The difficulties have been circumvented by use of 
a method (I) which truncates the distribution in such 
a manner that  it essentially preserves its basic features 
and defines an unequivocal centroid. This unequivo- 
cally defined centroid is the first moment of the 
truncated distribution and is indicated in our nomen- 
clature by replacing the overscored dash (--) used for 
true centroids with the tilde (~). 

In view of other approaches to this problem (Pike 
& Wilson, 1959) and in order to ascertain the precision 
of this procedure when it is used for lattice parameter 
determination, we shall review the theory of the anal- 
ysis of line profiles by the method of moments, give 
a rigorous formulation for our truncation and estimate 
the errors implied by this procedure. As was pointed 
out above, the need for modifying the method of 
moments with a truncation procedure arises from the 
mathematical properties of spectral distributions. In 
order to examine the validity of our procedure and 
establish the required spectral measures, we have 
derived an analytic representation of spectral profiles 
of K~ doublets. 

The method of m o m e n t s  in line profile analysis 

In a diffractometer recording, an observed intensity 
distribution or line profile, f(e), is a function of e 
where e/2 is the glancing angle. The centroid of f(e), 
designated by gl, is defined as 

S g~= _ ef(e) de ( e ) d e .  (1) 

The mean square broadening or variance of f(e), 
designated by V¢, is defined as 

f 0o e2f(e)  de 

V f  ~ --o0 _ (gf)2. (2) 

An observed line profile results from the convolution 
of several instrumental aberrational functions with the 
intrinsic diffraction pattern of the powder and the 
X-ray spectral distribution. For example, if z(e) is 
the convolution of u(e)  with w(e), we write 

f 
o o  

z(e) = u * w(e)  = u ( n ) w ( e - n ) d n .  (3) 
- - C O  

In this notation 
f(e)  = h ,  ( j ,  ~(e)) (4) 

where h(e) is the X-ray spectral distribution on an 
angle scale, j (e) is the result of a convolution of several 
instrumental aberrational functions, and k(e) is a 
function representing the intrinsic diffraction pattern 
of the powder modified by the purely crystallographic 
effects. 

Consider equation (3) which defines a convolution. 
If the distribution u(e) is infinitely narrow, we can 
write (with appropriate choice of origin) u(e)  = 5(e) 
where ~(e) is the Dirac delta function in the vicinity 

of 0, i.e., I u(e) = 1 in the vicinity of 0 and u(e) = 0 

elsewhere. Then 

z(e) = u ,  w(e) = w(e) .  (5) 

I t  follows that  in an aberrationless instrument 

f(e) = h , / c ( e ) .  (6) 

:Furthermore, if we deal with a well crystallized 
powder, the particles of which are free of imperfec- 
tions and not too small, we can consider the spread of 
]c(e) to be very small compared to the spread of h(e), 
so that  in an ideal experiment using an aberrationless 
instrument and ideal powder we would have 

f ( e )  = h ( e ) .  (7) 

In the discussion that  follows it is convenient to 
consider an observed line profile as a modified spectral 
distribution. For this purpose we define a 'generalized' 
aberrational function g(e) given by 

g(e) = j ,  ~(e) ,  (s) 

acting in the vicinity of a specific angle e 0. :Previous 
work (Wilson, 1950, 1954; Parrish & Wilson, 1954, 
1959; Pil:e, 1957) has shown that  the form of g(e) 
does not change rapidly with e, i.e., g(e) in the vicinity 
of s 0 is the same as g(e) in the vicinity of e0+5 
where (~ is small. Combfl~ing equations (4) and (8) 
we obtain 

f(e) = h .  g(e). (9) 

I t  can be shown that  

and 
gs = ~g+ g~ (10) 

v f  = v g +  vh = v j +  v ~ +  v ~ .  ( l l )  

Equations (10) and (11) are the basis for the descrip- 
tion of line profiles in terms of moments. 

The experimental problem which must be solved to 
interpret line profiles in lattice parameter determina- 
tions by the method of moments is to determine gs 
from the measurement off(s) and then to subtract gg, 
which is known from aberration studies, to obtain g~ 
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The relation between gh and g, the centroid of the 
spectral distribution on a wavelength scale, is then 
used to determine d, the interplanar spacing sought 
(Ladell, Mack, Parrish & Taylor, 1959). Similarly, 
the interpretation of line profiles for crystallographic 
effects which give rise to line broadening requires the 
determination of Vk, the variance due to purely 
crystallographic effects. The latter is obtained by 
calculating Vs from the measured f(e) and subtracting 
from it the known values of V~, the variance due to 
instrumental aberrations, and Vh, the spectral vari- 
ance. 

Unfortunately, theoretical and experimental anal- 
yses (Hoyt, 1932; Shacklett & DuMond, 1957) suggest 
that  the spectral distribution h(e) is infinite in ex- 
tension and decays slowly at a rate proportional to 
l/e% :By virtue of equations (7) and (9), these prop- 
erties are also manifest in the observed distribution. 
Consequently, gl and ga are indeterminate since the 
integral in equation (1) which defines gl is logarith- 
mically divergent. Moreover, Vs and Vh are each 
infinite since the integral in equation (2) which defines 
Vs diverges. We have therefore developed a truncation 
procedure to avoid these difficulties and yet retain 
the concepts stated in equations (10) and (11). 

T r u n c a t i o n  and error  e s t i m a t e  

Our truncation procedure has already been described 
(I). Here we rigorously formulate the truncation and 
consider the implications of this procedure. 

Let P(x) be a spectral distribution or a distribution 
formed by convolution of a spectral distribution with 
an aberrational distribution. The argument is either 
the angle variable s or the wavelength variable 2. 

The tilde centroid ~p of the distribution P(x) is 
defined by 

f xe = xP(x) dx P(x)dx (12) 
X l  I ~ X l  

where the integration limits x 1 and x 2 are determined 
by the conditions: 

P(xl) = P(x2) (13) 
and 

f x2 f °° P(x) dx -P(x l )  [x2-xl] = 0"9 P(x)dx . (14) 
Z 1 - -  O0 

In basing the truncation upon 90 % of the integrated 
intensity (equation (14)), we have maintained the 
shape of the distribution essentially intact, yet have 
excluded portions of the tails which are difficult to 
measure experimentally because of the low signal-to- 
background ratio. Because the limits are assigned on 
the basis of equal ordinate heights (equation (13)), 
the tilde centroid is relatively insensitive to small 
deviations from 90 % of the integrated intensity. This 
insensitivity is necessary in practice since there is 
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always a slight indeterminacy in the assignment of 
the background level. 

The tilde variance Vp(x) of the distribution P(x) 
is defined as 

~,x2 
x~P(x) dx 

# ~ ( x )  = .ix1 _(~)2.  (15) 

t Z2p (x) dx 
X l  

In using the method of moments we replace the true 
(but indeterminate) centroids ~p by ~p and use the 
arbitrarily defined variance Fp in place of Vp. In 
doing this we make the following assumptions: 

(1) The decay of P(x) for large values of ]x] is at 
least of the order of 1/x 2., so that  the integral 

I~ P(x)dx converges absolutely, condi- Under these 

tions it follows that  5p is absolutely convergent or at 
worst logarithmically divergent. 

(2) Even if the first moment of P(x) is absolutely 
convergent and ~p can be evaluated, ~ is a good 
approximation of ~p, that  is 

xP -- xv.  (16) 

(3) If ~p is logarithmically divergent, ~p defines 
the centroid of the distribution P(x). 

On the basis of these assumptions, the summation 
theorem (equation (10)) still holds approximately, 
that  is, 

~s~-- ga+?h . (17) 

The degree of approximation depends upon the 
exact form of g(e) and h(e), and an exact evaluation 
of the error introduced by the method cannot be given 
unless these functions are specified. I t  is possible, 
however, to give a good account of the truncation error 
by testing a hypothetical case which typifies profiles 

* The assertion (see for example, Shacklett  & DuMond, 
1957) tha t  it has been demonstra ted both theoretically and 
experimental ly tha t  X-ray  emission lines are Cauchy-like 
should be accepted with reservations. Since the exact  shape of 
emission lines has never  been synthesized from two-crystal 
spectroscopic work, experimental  verification is lacking. The 
experimental  demonstrations to which these authors refer is 
contingent upon assumptions concerning the exact  shape of 
two-crystal rocking curves which must  be removed (by un- 
folding) before the exact  shape of the emission line can be 
revealed. The shape of the anti-parallel position rocking curve 
for the Bragg case is complicated and is asymmetr ic  for real 
crystals. Even  for non-absorbing crystals (Zachariasen, 1945) 
the complexity of the shape of the intrinsic diffraction pa t te rn  
does not  warrant  a simple model, as has been assumed by 
Brogren (1954) for the rocking curve. The difficulty of re- 
moving the crystal aberration from an observed two-crystal 
spectral profile has been discussed in detail (Parrat t ,  Hemp- 
stead & Jossem, 1957). Fur thermore ,  the classical dispersion 
theory of emission line shape (Hoyt, 1932) does not  satis- 
factorily explain reported asymmetries.  At present, little is 
known about the exact  na ture  of the tails of emission lines, 
so tha t  it is not  clear whether  the slow decay in observed 
spectral profiles is due principally to crystal diffraction effects 
or is inherent  in the emission lines. 

38* 
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encountered in practice. To est imate the t runcat ion 
error we have considered the following problem. 

Let  h(x) represent a spectral dis tr ibut ion given by  

h(x) = 1 / ( l + x  2) for x < 0 
h(x) = 1/(1 +y~x ~) for x > 0 (18) 

and let g(x) be an aberrat ional  dis tr ibut ion given by  

g(x) = x+'c for --7 < x < T 

g(x) = 0 for x < --~ (19) 

g(x) = 0 for x > 7 .  

When  ? < 1, h(x) is representat ive of the asym- 
metr ic  profiles obtained in practice using the K s  
series of the t ransi t ion elements. Reverse asymmetr ies  
(9, > 1) have been reported for some of the lines 
(Kc% of V, Ti, etc.). The t r iangular  dis t r ibut ion g(x) 
is typical  of aberrations which occur at very high 
diffraction angles. At modera te ly  high angles the 
aberrat ion is represented by  a t r iangular  dis t r ibut ion 
which is the reverse of g(x), i.e., g(x)= -x+ '¢  in the 
in terval  ( - 7 ,  7). All cases are thus considered if ? is 
t aken  greater and less t han  unity.  

The convolution of h(x) with g(x) is given by  

+(x+v){~ 
where 

$ = e = 1  
~ = l , e =  ? 

1 } 
In [1 +~2(x-T)2] - ~ In [1+ ~og(x+v) 2] 

tan-1 ~ ( x + ~ ) - ~  tan-1 ~(x-~)}  (20) 

:[or - - c x ) <  x _<--T 

for --v < x _< v 

for T < x < ~ .  

The t runcat ion error A T was calculated from 

AT = x / -  (xg+x~) • (21) 

xs was determined from equation (20) and xh from 
equat ion (18) using the ti lde definit ion given by  equa- 
tions (12), (13) and (14). Thus 

~h = 3 . 4 0 8 8 ( 1 - ? ) / 2 ) , .  (22) 

An analyt ic  expression was also obtained for xs in 
terms of the parameters  T and ?, bu t  this  expression, 
though tractable,  is too long for inclusion here. More- 
over, it  was more expedient  to calculate xs by  numeri-  
cal integration methods and a Royal  Precision LGP-30 
calculator was used. 

The values of ~ obtained for T ranging from 0.125 
to 5.000 and ? from 0.6875 to 1.4532 are listed in the 
sixth column of Table 1. Also listed in Table 1 are the 
increment  Ax used to approximate  the integrals by  
sums (third column) and the l imits  of integrat ion x 1 
and x 2 (fourth and fifth columns) determined by  the 
t runcat ion procedure defined by  equations (12), (13) 
and (14). (~g+2h) given in the seventh column was 
obtained from 

Y.g+~ch = T/3+3.4088(1-?/2?) ,  (23) 

since it  follows from equat ion (19) tha t  

• g = 7/3.  (24) 

The results shown in the last  column indicate tha t  the 
t runcat ion error increases as both T and 1/)J increase. 
The magni tudes  of the errors are given in units  of 
the width  at one-half m a x i m u m  of the spectral  line, 
l + ( l / ? ) .  

In  order to determine the magni tude  of the t runca-  
t ion errors for cases encountered in practice where the 
centroid of the aberrat ion function is known in 
degrees e, it  is necessary to determine the width  of a 
spectral line in degrees e and to convert Table 1 to 
angle units. Consider a spectral line with width  at  
one-half m a x i m u m  equal to 0-2311+ (i /y)]  x.u., asym- 
met ry  index 1/y and peak position at 1540 x.u. ; this 
hypothet ical  spectral line closely resembles Cu K ~  1. 

Table 1. Truncation error in the center of gravity determination of f(x)* 

~? z, A x z 1 x2 ~I 79 + 5h A r § 
1"0000 0-125 0.03125 --12-7500 12-81250 0-0419 0.0417 0-0002 
0"6875 0"25 0-06250 --12.6250 18"5625 0-8603 0-8580 0-0023 
0"8125 0"25 0.06250 --12-6250 15"6875 0"4776 0"4766 0-0010 
1"0000 0"25 0-03125 --12"71875 12"87500 0"0838 0-0833 0"0005 
1.0000 0"25 0"06250 --12"6250 12"7500 0"0838 0-0833 0-0005 
0'6875 1'00 0'06250 --12'4375 18'8750 1"1109 1"1080 0"0029 
0.8125 1.00 0.06250 -- 12.3750 15.9375 0.7277 0.7266 0.0011 
1.0000 1.00 0-06250 --12.4375 13.0625 0-3338 0"3333 0"0005 
1.2344 1.00 0.06250 -- 12.4375 10-6875 0.0104 0.0097 0-0007 
1-4531 1-00 0.06250 --12.4375 9-1250 --0 .1983 --0-1981 --0-0002 
0.6875 5-00 0.12500 --11-875 20.625 2-4442 2.4414 0.0024 
0.8125 5.00 0-12500 -- 11.875 17-875 2.0628 2.0600 0-0028 
1"0000 5-00 0"12500 --11"875 15"000 1"6675 1.6667 0"0007 
1.2344 5.00 0.12500 - -11.875 12-625 1.3411 1.3431 -- 0.0020 
1"4531 5"00 0"12500 --12"000 11"250 1.1307 1.1352 --0.0045 

* All n u m b e r s  excep t  ? are g iven in uni ts  of the  wid th  of the  spectra l  line a t  one-half  peak  height ,  i.e., in t e rms  of 1 + (1/?). 
t ~' is the  reciprocal  of the  a s y m m e t r y  index  of the  spect ra l  line. 
:~ T is one-half  the  base wid th  of the  r ight  isoceles t r iangle  used to  r ep resen t  the  abe r r a t ion  funct ion .  
§ These  n u m b e r s  m u s t  be mul t ip l i ed  by  the  angular wid th  of the  spectra l  line to  ob ta in  the  t r u n c a t i o n  e r ror  in °e. 
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If we assume that  the centroid of this line occurs at 
120 ° (in the absence of aberrations), then the width in 
degrees e is 0-03011+ (1/?)]. The effect of the trunca- 
tion error in degrees e for aberrational corrections of 
the order of 0.001 ° to 0.050 ° 2e can be found by 
multiplying the last column by 0.030 ° . The second 
column multiplied by 0.030°/3 is the corresponding 
aberration correction. The results in Table 1 show that  
for the cases considered the truncation error is less 
than 0.0002 ° . The aberrational corrections are not 
presumed to be known to better than about 0.001 ° 
and since the example is a good model of a practical 
case, we may conclude that  the truncation error is 
negligible. Although the angular width of the spectral 
line increases with e, the aberrational correction de- 
creases up to about 160 ° e and the truncation error is 
negligible in the region 120-160 ° e. Above 160 ° the 
axial divergence begins to dominate the aberrational 
correction and below 120 °, where other aberrations 
dominate, truncation errors of the order of 0.001 ° may 
o c c u r .  

The spectral  distribution 
In order to follow the procedure for determining lattice 
parameters (I), estimate the distortions in observed 
line profiles due to dispersion as well as the Lorentz 
and polarization factors (Ladell, Mack, Parrish & 
Taylor, 1959), and in general to employ the method 
of moments in any analyses of line profiles, it is neces- 
sary to have a suitable description of the spectral 
distribution. Unfortunately, tables of X-ray wave- 
lengths (Cauchois & Hulubei, 1947) do not give suf- 
ficient information about the features of spectral 
profiles from which spectral measures other than the 
peak position can be inferred. X-ray wavelengths are 
normally reported in terms of the peak of the spectral 
distribution (Bearden & Shaw, 1935), but no definitive 
statement is made in the literature as to the procedure 
used to establish the position of the peak. In fact it is 
unlikely that  wavelengths derived from measurements 
of films, photometer tracings or ionization chamber 
data all refer to the same characteristic of the spectral 
intensity distribution. Some papers (Bearden & Shaw, 
1935; Allison, 1933; Parratt ,  1933) report the breadth 
of the spectral line and the index of asymmetry, but 
only rarely are full line profiles published (Hoyt, 1932; 
Spencer, 1931). In view of the difficulties of establish- 
ing the background levels and correcting the data for 
the crystal rocking width and instrumental aberra- 
tions (a complete account of which is not always given), 
it is not o ~ b l e  to determlno, nrecise vahle.~ c)f ~. ¢)r 

The (empirical) analytic representation given here has 
been compared with unpublished spectral profiles of 
Cu K~ and Fe Kc~ which were obtained with a two- 
crystal spectrometer and made available to us by 
Prof. J .A .  Bearden of Johns Hopkins University. 
Except for minor details, our model is reasonably 
consistent with these experimental spectral profiles. 
To synthesize our spectral model we have used the 
parameters of Bearden & Shaw (1935), who have 
published data for the following characteristics of the 
K-series of a number of transition elements" ~1 and 
~ ,  the wavelengths of the peaks; w 1 and w2, the 
widths at one-half peak height; and u a and u2, the 
indices of asymmetry of the K~ 1 and K~ 2 distribu- 
tions. In accordance with spectroscopic information 
cited previously, we assume that  the decay of the 
distributions away from the peaks is Cauchy-like; i.e., 
of the order of 1/~ 2, and that  the integrated intensity 
of the K~ 1 distribution is twice that  of the Ks~ 
distribution. The latter is valid theoretically for ele- 
ments whose L-shells are complete. We will ignore the 
K s  satellite lines. 

We define the following quantities" 

a = ( l+ul)/w 1 
b = ( l+u l ) /u lw  1 

¢ = ( I + u 2 ) / W  2 

m = (l+u2)/u2w 2 (25) 

A = 2 ~ - 2 ~  

Q = ½((a+b)/ab)(cm/(c+m))= ½(wa/w2) 

An analytical expression for the K s  distribution 
based upon the foregoing assumptions is accordingly 
given by 

I(~, L~, A) = I(z) 

= 1/(l+aez 2) + Q / i , l + d ( z - A )  2) for 

= 1/(1 +b~z ~) + Q/(1 + d ( z - A )  2) for 

-- 1/(1 +b2z 2) + Q/(1 + m 2 ( z - A )  ~) for 

z < 0  

O < z < A  

z ~ A  . 

(26) 

On the basis of the definition of the tilde centroid 
given by equations (12), (13)and (14), 

= ~al+l{ ln  (l+b2z~) in (l+a2z~)~ 
b 2 a-~ ) 

+Q{ln  [l +m~'(z~-A) 2 2 In [l +d(zl-A)~]}c~ " (27) 

' J  . - ,  ,_. - ~  

( 

m 
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Table 2. X-ray  spectral data* 

H.W. obs. H.W. corr. Index of 
( 1 -F 1 order) w asymmetry A ;t~. 2 (2/2~.) -- 1 

Line (x.u.) (x.u.) u (kX.) (kX.) (kX.) (%) 

Cu Ka2 51.5 0.635 1.31 1.541 220 
1.538 673 1.538 745 0.0047 

Cu Ka 1 39.9 0-471 1.13 1.537 400 
Fe Ka z 80.1 0.970 1-26 1.936 000 

1.933 380 1.933 657 0-0143 
Fe Kaz 68.4 0.805 1.61 1.932 070 
Cr Ka9 90.4 1.031 1.03 2.288 889 

2.286 296 2-286 450 0-0067 
Cr Ka 1 75.5 0-829 1.37 2.285 000 

* Based on data published by Bearden & Shaw (1935). The width at one-half maximum, H.W., has been corrected for crystal 
rocking width according to the formula given by Parratt (1935), WT = W0--2"9W~ ~ where WT is the true width, W 0 is the 
observed width in the (1+ 1) position and Wc is the rocking width of the crystal used by Bearden & Shaw (1935). 

and  

I(z~) = 1/(1 +a=z~) + Q/(1 +cP"(z~-A) 9) 
= 1 / (1+b~)  + Q/(] + ~ ( = ~ - A ) ~ )  

1 1 z 
A = ~ t an  -1 bz~--a t a n -  az 1 

+ Q { t a n - ~ m ( z 2 - A )  t an - l  c ( z ~ - A ) }  
m c 

Similarly the  spectral variance is given by 

(29) 

(30) 

f Z~z~ I(z) dz 
1~ = zl _(~)=. (31)  

f ~ I(z) dz 
z l  

Analyt ica l  representat ions of the Cu Kc¢, Fe Kc~ and 
Cr Kc¢ doublet  distr ibutions were constructed from 
these formulat ions based on the Bearden & Shaw 
(1935) parameters .  Table 2 lists the  parameters  and 

differences between 2~  and 2 where 2~° = 2~1+A/3, 
often referred to as the 'weighted'  mean. The greater  
difference for Fe Kc¢ is due to its greater indices of 
asymmetry .  Fig. 1 shows the constructed Cu Kc~ dis- 
t r ibution.  
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t Cu Ka 1,2 
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Fig. 1. Spectral distribution of Cu Ka doublet based on data 
of Bearden & Shaw (1935). 

I_f 2 is used to derive a lat t ice parameter  using the 
method  described, the  value of the lat t ice parameter  

should be independent  of the rad ia t ion  used. On t he  
other  hand,  the use of 2~. will lead to a lat t ice para-  
meter  value which will depend on the  rad ia t ion  used, 
even though 2~. is the  same characterist ic of the  
spectral dis t r ibut ion for each radiat ion.  The l i tera ture  
contains m a n y  examples of different lat t ice parameters  
for a given substance obtained with different radiat ions  
in which the discrepancy is usual ly ascribed incorrect ly 
to errors in absorpt ion corrections. 

The full implications and u t i l i ty  of our t r e a t me n t  of 
the method  of moments  will be be t te r  unders tood 
when extensive experimental  determinat ions  of lat t ice 
parameters  and other  informat ion obtained from the  
analysis of line profiles are available. To this end a 
comprehensive program is under  way. The pre l iminary 
results of this program confirm the  effectiveness of 
our procedures; these will be reported in a separate 
paper. 

We are indebted to Prof. A. J.  C. Wilson of Univer- 
s i ty College, Cardiff, for useful discussion of the  
problem during his visit here in August  1957, and  to 
Dr E. R. Pike, also of Cardiff, for his criticism and 
s t imulat ing correspondence. Prof. P. P. Ewald of 
Polytechnic Ins t i tu te  of Brooklyn and Prof. G. Uh]en- 
beck of Univers i ty  of Michigan offered helpful sug- 
gestions in some of the mathemat ics .  We are indebted  
to Dr N. Spielberg of this labora tory  for helpful 
discussions on the  na ture  of spectral lines, and to 
Miss Marian Mack who carried out the programming 
and computer  calculations. 
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It  has been found that in the determination of lattice parameters by the method of moments, cor- 
rections must be applied to account for the distortion of line profiles caused by the effects of dis- 
persion, Lorentz and polarization factors. These corrections have been calculated as a function of 
the diffraction angle for Cu Ka, Fe K a  and Cr Ka radiations. The corrections presented here are 
compared to those given by Pike. 

In  the centroid method of precision latt ice parameter  
determinat ion,  the in terp lanar  spacing d is found 
from Bragg's  law b y  subst i tut ion of the  centroid of 
the incident  spectral  dis t r ibut ion and the centroid of 
the  spectral  dis t r ibut ion after diffraction from the set 
of planes. The la t ter  centroid is determined from the 
centroid of the  observed diffracted line profile by  
removing the effects of the  distortions caused during 
the  diffraction process (Ladell, Parr ish  & Taylor,  
1957, 1959a, b). The distortions caused by  the various 
ins t rumenta l  aberrat ions (flat specimen, axial  diver- 
gence, etc.) have  been discussed (Wilson, 1950; 
Parr ish  & Wilson, 1954, 1959; Pike 1957), bu t  even 
after  these have been accounted for, the  effects of 
dispersion, the  Lorentz factor and the  polarization 
factor remain.  

The effect of dispersion is t ha t  the  centroid of a 
dispersed spectral  d is t r ibut ion (on an angle scale) 
deviates from the angle equivalent  of the centroid of 
the incident  spectral  dis t r ibut ion by  an  amount  A D. 
/1D has been de termined from the spectral  dis t r ibut ion 
and  is plot ted as a funct ion of the  diffraction angle 
s (=  20) for Cu K s ,  Fe  Kc¢ and  Cr K~,  Fig. 1. Al- 
though the  complete spectral  distr ibutions have not  

been published, an analyt ic  representation,  derived 
on the  basis of the parameters  given in the l i terature 
(Hoyt, 1932; Bearden & Shaw, 1935; Par ra t t ,  1936), 
has been used for comput ing the graphs in Fig. 1. 

The expression for I(~t), used for the spectral dis- 
t r ibut ion,  is 

1 Q 
1(4) 

1 + a  9 (~ t -~ l )  2-~ 1 +c  2 (~-~ t~-Ll )  2 

for ;t < ~t~ 1 

1 Q 
1 +b~ (~t-)l~l) 2 1 +c~ ( ~ - ~ - d )  2 

for () ,~+/I) >_ 2. ~ ~ 

1 Q 
l + b ~ ( ~ - ) . ~ )  2 l + m  2 (~t -~1- /1)2  

for ~ >_ (~t~1+/1). 

(1) 

The values of the constants  used are given in Table 1 ; 
a complete discussion of the representat ion of the  
spectral profile has  been reported (Ladell, Parr ish  & 
Taylor,  1959b). 


